HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\) và x + y + z khác 0. Tính \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
CM:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Với x ; y ; z >0
cho \(x,y,z>0\). chứng minh rằng
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\text{≥}\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\)
Cho x + y+z =0 a, Tính \(x^3+y^3+z^3-3xyz\) b, Tính \(\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\) c, \(\dfrac{1}{y^2+z^2-z^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)
Cho x,y,z là các số dương. CMR:
a) (x+y+z)(\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\)) ≥\(\dfrac{9}{2}\)
b) (x+y+z+t)(\(\dfrac{1}{x+y+z}+\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}\)) ≥\(\dfrac{16}{3}\)
c) \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥\(\dfrac{1}{2}\left(a+b+c\right)\)