1. Tìm giá trị lớn nhất của A=2x-3x2+4
2. Giải phương trình 2|x|-2=|x-1|
3. Tìm các giá trị của x sao cho biểu thức \(\dfrac{7}{5}\) > \(\dfrac{x+1}{5}-\dfrac{x-2}{3}\) > 1
4. Tìm số tự nhiên x thỏa mãn ( x+2 )2 - ( n-3 )( n+3 ) \(\le\) 40
1. Tìm giá trị lớn nhất của A=2x-3x2+4
2. Giải phương trình 2|x|-2=|x-1|
3. Tìm các giá trị của x sao cho biểu thức \(\dfrac{7}{5}\) > \(\dfrac{x+1}{5}-\dfrac{x-2}{3}\) > 1
4. Tìm số tự nhiên x thỏa mãn ( x+2 )2 - ( n-3 )( n+3 ) \(\le\) 40
Câu 3:
Ta có: \(1< \dfrac{x+1}{5}-\dfrac{x-2}{3}< \dfrac{7}{5}\)
\(\Leftrightarrow1< \dfrac{3x+3-5x+10}{15}< \dfrac{7}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2x+13}{15}>1\\\dfrac{-2x+13}{15}< \dfrac{7}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+13>15\\-2x+13< 21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x>2\\-2x< 8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\Leftrightarrow-4< x< -1\)
Bài 4:
Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)< =40\)
\(\Leftrightarrow x^2+4x+4-x^2+9< =40\)
=>4x<=27
hay x<=27/4
Giải pt sau: x4 - 2x2 - 144x - 1295 = 0
\(x^4-2x^2-144x-1295=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(4x^2+144x+1296\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(2x+36\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+2x+36\right)\left[x^2+1-\left(2x+36\right)\right]=0\)
\(\Leftrightarrow\left(x^2+2x+37\right)\left(x^2-2x-35\right)=0\)
\(\Leftrightarrow\left(x^2+5x-7x-35\right)\left(x^2+2x+1+36\right)=0\)
\(\Leftrightarrow\left[x\left(x+5\right)-7\left(x+5\right)\right]\left[\left(x+1\right)^2+36\right]=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-7\right)\left[\left(x+1\right)^2+36\right]=0\)
Dễ thấy:\(\left(x+1\right)^2+36\ge36>0\forall x\) (vô nghiệm)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\)
giúp mk mấy bài này vs gần thi hsg rồi, tks các bạn trc nhé
1) tìm nghiệm nguyên của pt:
3x2+10xy+8y2=96
2)
bãi để xe ở địa điểm A có 60 xe, điểm B có 40 xe, điểm C có 20 xe(A, B, C ko thẳng hàng ) Hỏi xây dựng trạm xăng ở chỗ nào để tổng quãng đường tất cả các xe phải đi từ bãi đến trạm là nhỏ nhất?1) Ta có: 3x2+10xy+8y2=96
<=> 3x2+6xy+4xy+8y2=96
<=> 3x(x+2y)+4y(x+2y)=96
<=> (x+2y)(3x+4y)=96
( x,y là số nguyên)
lại có: 3x+4y-(x+2y)=2x+2y là số chẵn
=> 3x+4y và x+2y cùng là số chẵn hoặc cùng là số lẻ (*)
mà (x+2y)(3x+4y)=96 là số chẵn
=> 3x+4y và x+2y cùng là số chẵn hoặc là một chẵn một lẻ (**)
Từ (*) và (**) suy ra:
3x+4y và x+2y cùng là số chẵn
=> ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
vậy nghiệm của pt như trên
a) x2+y2+25 = xy+5y+5x
b) 9x2+y2+9 = 3xy+3y+9x
tìm gtln của 3(x+1)/(x3+x2+x+1)
giải biện luận phương trình (x/(x-a))+(x/(x-b))=2
1)Ta có:
\(A=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\)
Mà: \(x^2\ge0\Rightarrow x^2+1\ge1\)
\(\Rightarrow A=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)
\(\Rightarrow MaxA=1\) khi \(x=0\)
Giải phương trình sau :
\(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\left(\dfrac{x^2-10x-27}{1973}-1\right)+\left(\dfrac{x^2-10x-29}{1971}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1973}+\dfrac{x^2-10x-2000}{1971}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)=0\) vì \(\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)\ne0\)
\(\Leftrightarrow x^2-50x+40x-2000=0\)
\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)
\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-50=0\\x+40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
Vậy: Giá trị x thỏa mãn là: \(x=-40;50\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
vì \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
Nên \(x^2-10x-2000=0\)
<=> \(x^2-50x+40x-2000=0\)
<=> \(x\left(x-50\right)+40\left(x-50\right)=0\)
<=> \(\left(x-50\right)\left(x+40\right)=0\)
<=> \(x=50\) hoặc \(x=-40\)
Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)
Giúp tớ nhé
Một người đi bộ một quãng đường dài 18km trong khoảng thời gian không nhiều hơn 4 giờ. Lúc đầu người đó đi với vận tốc 5km/h, về sau đi với vận tốc 4km/h. Xác định độ dài đoạn đường mà người đó đã đi vơi vận tốc 5km/h.
Gọi độ dài quãng đường mà người đó đi với vận tốc 5km/h là x ( km) (x>0, x\(\le\) 18)
=> độ dài quãng đường mà người đó đi với vận tốc 4km/h là 18-x (km)
=> tgian người đó đi với vận tốc 5km/h là \(\dfrac{x}{5}\) (h)
tgian người đó đi với vận tốc 4km/h là \(\dfrac{18-x}{4}\) (h)
=> ta có bất phương trình:
\(\dfrac{x}{5}+\dfrac{18-x}{4}\le4\)
giải ra ta được : \(x\ge10\) mà \(x\le18\)
=> \(10\le x\le18\)
vậy độ dài quãng đường người đó đi với vận tốc 5km/h ngắn nhất là 10km, dài nhất là 18km
Cho \(x+2y=1\)
Tìm giá trị nhỏ nhất của A = \(x^2+2y^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+2\right)\left(x^2+2y^2\right)\ge\left(x+2y\right)^2\)
\(\Rightarrow3\left(x^2+2y^2\right)\ge\left(x+2y\right)^2\)
\(\Rightarrow3\cdot A\ge\left(x+2y\right)^2=1^2=1\)
\(\Rightarrow A\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{3}\)
ta có: \(x+2y=1\Rightarrow x=1-2y\)
thay vào A, ta có:
\(A=\left(1-2y\right)^2+2y^2\)
\(A=\left(6y^2-4y+\dfrac{2}{3}\right)+\dfrac{1}{3}\)
\(A=\left(\sqrt{6}y-\dfrac{\sqrt{6}}{3}\right)^2+\dfrac{1}{3}\)
vậy Amin=1/3
Một khu đất hình chữ nhất có chiều dài gấp 3 lần chiều rộng và có chu vi là 160m. Tính diện tích khu đất
Giải bằng cách lặp pt nhé
Gọi a là chiều rộng của khu đất
Vậy chiều dài của khu đất đó là 3a
Theo đề ta có pt:
(a+3a)*2=160
<=> 4a*2=160
<=> 4a=80
<=>a=20
Vậy chiều rộng của khu đất là a=20m
Chiều dài là 20*3=60m
Dtích khu đất : 20*60=1200m2
Cho 7x2+8xy+7y2=10. Tìm Max, Min: x2+y2
Ta có: \(7x^2+8xy+7y^2=10\)
\(\Rightarrow4x^2+8xy+4y^2+3x^2+3y^2=10\)
\(\Rightarrow4\left(x+y\right)^2+3\left(x^2+y^2\right)=10\)
\(\Rightarrow3\left(x^2+y^2\right)=10-4\left(x+y\right)^2\)
\(\Rightarrow S_{Max}=x^2+y^2=\dfrac{10-4\left(x+y\right)^2}{3}\le\dfrac{10}{3}\)
Đẳng thức xảy ra khi \(x=-y\)
Ta có: \(x^2+y^2\ge2xy\forall x,y\) đẳng thức xảy ra khi \(x=y\)
Thay vào \(7x^2+8xy+7y^2=10\) ta có:
\(7x^2+8x^2+7x^2=10\)
\(\Rightarrow22x^2=10\Rightarrow x^2=\dfrac{10}{22}\Rightarrow y^2=\dfrac{10}{22}\)
Khi đó \(S_{Min}=\dfrac{10}{22}+\dfrac{10}{22}=\dfrac{10}{11}\)
Đẳng thức xảy ra khi \(x=y\)