Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+2\right)\left(x^2+2y^2\right)\ge\left(x+2y\right)^2\)
\(\Rightarrow3\left(x^2+2y^2\right)\ge\left(x+2y\right)^2\)
\(\Rightarrow3\cdot A\ge\left(x+2y\right)^2=1^2=1\)
\(\Rightarrow A\ge\dfrac{1}{3}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{3}\)
ta có: \(x+2y=1\Rightarrow x=1-2y\)
thay vào A, ta có:
\(A=\left(1-2y\right)^2+2y^2\)
\(A=\left(6y^2-4y+\dfrac{2}{3}\right)+\dfrac{1}{3}\)
\(A=\left(\sqrt{6}y-\dfrac{\sqrt{6}}{3}\right)^2+\dfrac{1}{3}\)
vậy Amin=1/3