cho hình chữ nhật ABCD. F là trung điểm của cạnh CD,E là điểm xác định bởi AB = 2EA.Gọi G là trọng tâm tam giác BEF.Phân tích vecto DG theo hai vecto AB,AD
Hỏi đáp
cho hình chữ nhật ABCD. F là trung điểm của cạnh CD,E là điểm xác định bởi AB = 2EA.Gọi G là trọng tâm tam giác BEF.Phân tích vecto DG theo hai vecto AB,AD
Gọi M là trung điểm EF
\(\overrightarrow{BM}=\dfrac{1}{2}\overrightarrow{BE}+\dfrac{1}{2}\overrightarrow{BF}=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CF}\right)\)
\(=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}=-\dfrac{7}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)
\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=-\dfrac{7}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=-\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)
\(\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{AD}+\overrightarrow{AG}=-\dfrac{1}{6}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AD}\)
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
cho hình bình hành ABCD , có tâm I(1;2) và các đường thẳng AB, BC,CD,DA lần lượt đi qua các đi qua các điểm M(0;1) ,N(4;2) P(-1;-1) và Q(0;3) . viết phương trình các đường thẳng chứa 4 cạnh của hình bình hành
Đáp án:
AD+BC
=ED-EA+EC-EB
=(ED+EC)-(EA+EB) (1)
Mà E là trung điểm của AB=> EA+EB=0
(1)=2EF (F là trung điểm DC)
Lời giải:
\(\overrightarrow{AC}.\overrightarrow{BI}=(\overrightarrow{AM}+\overrightarrow{MC})(\overrightarrow{BM}+\overrightarrow{MI})\)
\(=\overrightarrow{AM}.\overrightarrow{BM}+\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}+\overrightarrow{MC}.\overrightarrow{MI}\)
\(=\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}\)
\(=\overrightarrow{AM}.\frac{-\overrightarrow{AM}}{2}+\frac{\overrightarrow{BC}}{2}.\overrightarrow{BC}=\frac{BC^2-AM^2}{2}\)
\(=\frac{BC^2-(\frac{\sqrt{3}}{2}BC)^2}{2}=\frac{BC^2}{8}=\frac{9a^2}{8}\)
Cho tam giác ABC đều cạnh a , AH là dường cao , G là trọng tâm . Tính
a) \(\left|\overrightarrow{AB}\right|\)
b) \(\left|\overrightarrow{AH}\right|\)
c) \(\left|\overrightarrow{AG}\right|\)
a: |vecto AB|=AB=a
b: |vecto AH|=a căn 3
c: |vecto AG|=AG=2a căn 3/3
cho hình lục giác ABCDEF. Chứng minh
a) BA→ + DC→ + FE→ = FC→ + DA →+ BE→
B) ED→ + BE→ + CF→ = BF→ + CD→
cho 2 hình bình hành ABCD và AB'C'D' chung đỉnh A. chứng minh:
BB' →+ DD'→= CC'→
VT = CA + AC'
mà CA = CD + CB VÀ AC' = AD' + AB'
Cộng hai vế lại ta có : CD + CB + AD' + AB' = BD + B'D'
=BD' + DD' + BB' + D'B = BB' + DD' = VP
=> đpcm
Cho tam giác ABC nội tiếp đường tròn O. H là trực tâm của tam giác ABC. Gọi D là điểm đối xứng của A qua O.
a, Chứng minh: \(\overrightarrow{BD}\) \(=\)\(\overrightarrow{HC}\)
b, Gọi K là trung điểm AH, I là trung điểm BC. Chứng minh: \(\overrightarrow{OK}=\overrightarrow{IH}\) và \(\overrightarrow{OI}=\overrightarrow{KH}\)
cho tam giác có trọng tâm G, H đối xứng B qua G, CMR
a, \(\overrightarrow{AB}-12\overrightarrow{AC}+3\overrightarrow{MC}\) \(=\)\(\overrightarrow{0}\)
b, \(5\overrightarrow{AB}-\overrightarrow{AC}+6\overrightarrow{MH}=\overrightarrow{0}\)