Cho điểm O nằm trong hình bình hành ABCD. Các đường thẳng đi qua O song sóng với các cạnh của hình bình hành lần lượt cắt AB, BC, CD, DA tại M, N, P, Q. gọi E là giao điểm của BQ và DM , F là giao điểm của BP và DN. Tìm điều kiện để E, F, O thẳng hàng
Cho tam giác ABC và hai điểm M,N nằm trên các cạnh AC,AB sao cho MN song song với BC. Điểm P di chuyển trên đoạn thẳng MN. Lấy các điểm E,F sao cho \(EP\perp AC,EC\perp BC,EP\perp AB,FB\perp BC\)
a) Chứng minh rằng đường thẳng EF đi qua một điểm cố định khi P di chuyển
b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. CHứng minh BC đi qua trung điểm PQ
Cho ABCD là hình bình hành. Gọi E, F trên cạnh AB, AC sao cho AE=1/2AB, AF=1/3AC. Chứng minh D, E, F thẳng hàng
1)Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điển AB và CD. Đường thẳng AC cắt MD và NB tại R và F. CMR: véc tơ AE=véc tơ EF = véc tơ FC
2) cho đường tròn O và tam giác ABC nội tiếp đường tròn O sao cho BC không đi qua O. Gọi B đối xứng với B qua O, H là trực tâm của tam giác ABC.CMR véc tơ AH ma bằng véc tơ BC
Cho tam giác ABC. Gọi D, M lần lượt là các điểm sao cho: \(\overrightarrow{AD}=2\overrightarrow{AB}-\overrightarrow{CA}\), \(\overrightarrow{BM}=k\overrightarrow{CB}-\overrightarrow{AB}\) với \(k\in R\).
a) Tìm k để đường thẳng DM đi qua trung điểm N của đoạn thẳng BC.
b) Tính \(\frac{ND}{MN}\).
cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \(\frac{MA}{MB}=\frac{ND}{NC}\)và I, J lần lượt là trung điểm của AD,BC
a, tính vectoIJ theo vectoAB,DC
b, chứng minh trung điểm P của MN nằm trên đường thẳng IJ
1. Cho tam giác ABC . Các điểm M,N thỏa mãn : \(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\)
a. Tìm điểm I sao cho \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{O}\)
b. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định
c.gọi P là trung điểm của BN. Chứng minh đường thẳng MP luôn đi qua một điểm cố định
Cho tam giác đều ABC có cạnh bằng a và đường thẳng d đi qua A song song với BC; M là điểm thuộc đường thẳng D. Tìm giá trị nhỏ nhất của biểu thức:
P=\(\left|\overrightarrow{MB}+\overrightarrow{MC}-4\overrightarrow{MA}\right|\)