Biết hàm số y=f(x) có f ' ( x ) = 3 x 2 + 2 x - m + 1 , y=f(2)=1 và đồ thị của hàm số f(x) cắt trục tung tại điểm có tung độ bằng –5. Hàm số f(x) là
A. x 3 + x 2 + 4 x - 5
B. x 3 + x 2 - 3 x - 5
C. x 3 + 2 x 2 - 5 x - 5
D. 2 x 3 + x 2 - 7 x - 5
Cho hàm số y = f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu bằng – 3 tại điểm x=1 và đồ thị hàm số cắt trục tung tại điểm có tung độ là 2. Tính đạo hàm cấp một của hàm số tại x= -3
A. f'(-3)= 0
B. f'(-3)= 2
C. f'(-3)= 1
D. f'(-3)= -2
Biết hàm số f ( x ) = x 3 + a x 2 + b x + c đạt cực tiểu tại điểm x = 1 , f ( 1 ) = - 3 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng 2. Tính giá trị của hàm số tại x = 3
A. f 3 = 81
B. f 3 = 27
C. f 3 = 29
D. f 3 = - 81
Cho F(x) là một nguyên hàm của f ( x ) = 2 x + 1 trên R. Biết hàm số y = F ( x ) đạt giá trị nhỏ nhất bằng 39 4 . Đồ thị của hàm số y = F ( x ) cắt trục tung tại điểm có tung độ là
A. 10
B. 11
C. 37 4
D. 39 4
Cho hàm số y = a x 3 + b x 2 + c x + d có đạo hàm là hàm số y=f'(x) có đồ thị như hình vẽ bên.
Biết rằng đồ thị hàm số y=f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương. Hỏi đồ thị hàm số y=f(x) cắt trục tung tại điểm có tung độ bằng bao nhiêu?
A. 2 3
B. 1
C. 3 2
D. 4 3
Cho hàm số y = ax 3 + bx 2 + cx + d có đạo hàm là hàm số y = f '(x) có đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y = f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương. Hỏi đồ thị hàm số y = f(x)cắt trục tung tại điểm có tung độ bằng bao nhiêu?
A. 2 3 .
B. 1
C. 3 2 .
D. 4 3 .
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho hàm số y=f(x) có đồ thị y=f'(x) cắt trục Ox hoành tại ba điểm có hoành độ -2<a<b như hình vẽ. Biết rằng f(-2)+f(1)=f(a)+f(b). Để hàm số y = f ( x + m ) có 7 điểm cực trị thì mệnh đề nào dưới đây là đúng
A. f(a)>0>f(-2)
B. f(-2)>0>f(a)
C. f(b)>0>f(a)
D. f(b)>0>f(-2)
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f'(x), biết f(3)+f(20=f(0)+f(1) và các khẳng định sau:
1) Hàm số y=f(x) có 2 điểm cực trị
2) Hàm số y=f(x) đồng biến trên khoảng - ∞ ; 0
3) M a x 0 ; 3 f x = f 3
4) M a x ℝ f x = f 2
5) M a x - ∞ ; 2 f x = f 0 .
Số khẳng định đúng là
A. 2
B. 3
C. 4
D. 5