Lời giải:
Ta có:
$xy+yz+xz=(x+y+z)^2-(x^2+y^2+z^2+xy+yz+xz)=1-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow 3(xy+yz+xz)=1=(x+y+z)^2$
$\Leftrightarrow (x+y+z)^2-3(xy+yz+xz)=0$
$\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0$
$\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Vì $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$.
Do đó để tổng của chúng bằng $0$ thì $x-y=y-z=z-x=0$
$\Leftrightarrow x=y=z$
Khi đó:
$A=\frac{x}{x+x}+\frac{x}{x+x}+\frac{x}{x+x}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}$