(*) (x+y)3=(x+y)(x+y)(x+y)
=(x+y).[x(x+y)+y(x+y)]
=(x+y).(x2+xy+xy+y2)
=(x+y).(x2+2xy+y2)
=x(x2+2xy+y2)+y(x2+2xy+y2)
=x3+2x2y+xy2+x2y+2xy2+y3
=x3+(2x2y+x2y)+(xy2+2xy2)+y3=x3+3x2y+3xy2 (1)
(*)(x-y)3=(x-y)(x-y)(x-y)
=(x-y).[x(x-y)-y(x-y)]
=(x-y).(x2-xy-xy+y2)
=(x-y).(x2-2xy+y2)
=x(x2-2xy+y2)-y(x2-2xy+y2)
=x3-2x2y+xy2-x2y+2xy2-y3
=x3+(-2x2-x2y)+(xy2+2xy2)-y3=x3-3x2y+3xy2-y3 (2)
Từ (1);(2)=>(x+y)3+(x-y)3=x3+3x2y+3xy2+y3+x3-3x2y+3xy2-y3=2x3+6xy2
giải kiểu này mỏi tay quá,thôi bn ghi nhớ 2 hằng đẳng thức này nhé:(sau này áp dụng để giaỉ các bài tương tự)
1,(x+y)3=x3+3x2y+3xy2+y3
2,(x-y)3=x3-3x2y+3xy2-y3
(x+y)3=(x+y)(x+y)(x+y)
=(x+y).[x(x+y)+y(x+y)]
=(x+y).(x2+xy+xy+y2)
=(x+y).(x2+2xy+y2)
=x(x2+2xy+y2)+y(x2+2xy+y2)
=x3+2x2y+xy2+x2y+2xy2+y3
=x3+(2x2y+x2y)+(xy2+2xy2)+y3=x3+3x2y+3xy2 (1)
(x-y)3=(x-y)(x-y)(x-y)
=(x-y).[x(x-y)-y(x-y)]
=(x-y).(x2-xy-xy+y2)
=(x-y).(x2-2xy+y2)
=x(x2-2xy+y2)-y(x2-2xy+y2)
=x3-2x2y+xy2-x2y+2xy2-y3
=x3+(-2x2-x2y)+(xy2+2xy2)-y3=x3-3x2y+3xy2-y3 (2)
Từ (1);(2)=>(x+y)3+(x-y)3=x3+3x2y+3xy2+y3+x3-3x2y+3xy2-y3=2x3+6xy2
(*) (x+y)3=(x+y)(x+y)(x+y)
=(x+y).[x(x+y)+y(x+y)]
=(x+y).(x2+xy+xy+y2)
=(x+y).(x2+2xy+y2)
=x(x2+2xy+y2)+y(x2+2xy+y2)
=x3+2x2y+xy2+x2y+2xy2+y3
=x3+(2x2y+x2y)+(xy2+2xy2)+y3=x3+3x2y+3xy2 (1)
(*)(x-y)3=(x-y)(x-y)(x-y)
=(x-y).[x(x-y)-y(x-y)]
=(x-y).(x2-xy-xy+y2)
=(x-y).(x2-2xy+y2)
=x(x2-2xy+y2)-y(x2-2xy+y2)
=x3-2x2y+xy2-x2y+2xy2-y3
=x3+(-2x2-x2y)+(xy2+2xy2)-y3=x3-3x2y+3xy2-y3 (2)
Từ (1);(2)=>(x+y)3+(x-y)3=x3+3x2y+3xy2+y3+x3-3x2y+3xy2-y3=2x3+6xy2
(*) (x+y)3=(x+y)(x+y)(x+y)
=(x+y).[x(x+y)+y(x+y)]
=(x+y).(x2+xy+xy+y2)
=(x+y).(x2+2xy+y2)
=x(x2+2xy+y2)+y(x2+2xy+y2)
=x3+2x2y+xy2+x2y+2xy2+y3
=x3+(2x2y+x2y)+(xy2+2xy2)+y3=x3+3x2y+3xy2 (1)
(*)(x-y)3=(x-y)(x-y)(x-y)
=(x-y).[x(x-y)-y(x-y)]
=(x-y).(x2-xy-xy+y2)
=(x-y).(x2-2xy+y2)
=x(x2-2xy+y2)-y(x2-2xy+y2)
=x3-2x2y+xy2-x2y+2xy2-y3
=x3+(-2x2-x2y)+(xy2+2xy2)-y3=x3-3x2y+3xy2-y3 (2)
Từ (1);(2)=>(x+y)3+(x-y)3=x3+3x2y+3xy2+y3+x3-3x2y+3xy2-y3=2x3+6xy2