Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
cho xy +1 /y + yz+1/ z = xz +1/ z
CM : x=y=z hoặc x^2y^2z^2 =1
cho \(\frac{xy+1}{y}=\frac{yz+1}{z}=\frac{xz+1}{x}\)
CMR x=y=z hoặc x2y2z2=1
Cho x,y,z dương. Cmr 1/(x-y)^2 +1/(y-z)^2+1/(z-x)^2>=4/(xy+xz+yz)
Cho x,y,z#0 và 1/xy+1/yz+1/xz=0
tính x^2/yz+y^2/xy+z^2/xy
Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1
câu1 .a2+b2-a2b2+ab-a-b
câu 2 . xy.(x+y)-yz.(y+z)+xz(x-z)
câu3 .xyz-(x+y+yz+xz)+(x+y+2)-1
Cho x, y, z thỏa: x+y+z=a ; x^2+y^2+z^2=b ; 1/x+1/y+1/z=1/c Tính xy + yz +xz và x^3+y^3+z^3 theo a,b,c
cho 1/x+1/y+1/z=0 (x,y,z khác 0). Tính yz/x^2+xy/z^2+xz/y^2