=> x + (x + 1) + (x + 2) +...+ 19 = 0
<=> (x + 19) + (x + 1 + 18) + ... + (x + 9 + 10) = 0
<=> (x + 19) + (x + 19) +...+ (x + 19) = 0
<=> x + 19 = 0
<=> x = - 19
=> x + (x + 1) + (x + 2) +...+ 19 = 0
<=> (x + 19) + (x + 1 + 18) + ... + (x + 9 + 10) = 0
<=> (x + 19) + (x + 19) +...+ (x + 19) = 0
<=> x + 19 = 0
<=> x = - 19
1.tìm x biết:
a) \(2x-17=3^5:3^2\)
b) \(\left(19-x\right).2-20=2^3\)
c) \(2.\left(1+3+3^2+3^3+...+3^x\right)+1=81\)
Bài 2 :
a, \(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
b, \(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{\left(x-20\right)}=\frac{-3}{4}\)
\(\frac{2}{\left(x-1\right)\left(x-3\right)}\)+\(\frac{5}{\left(x-3\right)\left(x-8\right)}\)+\(\frac{12}{\left(x-8\right)\left(x-20\right)}\)-\(\frac{1}{x-20}\)=\(\frac{-3}{4}\)
A) \(\frac{3}{\left(X+2\right)\left(X+5\right)}\)+\(\frac{5}{\left(X+5\right)\left(X+7\right)}+\frac{7}{\left(X+10\right)\left(X+17\right)}=\frac{X}{\left(X+2\right)\left(X+17\right)}\)
B) \(\frac{2}{\left(X-1\right)\left(X-3\right)}+\frac{5}{\left(X-3\right)\left(x-8\right)}+\frac{12}{\left(X-8\right)\left(X-20\right)}-\frac{-1}{X-20}=\frac{3}{4}\)
Tìm x :
\(a,x.\left(5x+10\right)+5.\left(x23+30\right)-9.\left(3x+5\right)=100\)
\(b,10.\left(8x+9x\right)+8.\left(2x-1\right)-2.\left(5-6x\right)=20\)
\(c,\left(x.5^2\right).\left(194+x.20\right)=50\)
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
Tìm x, biết:
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\left(x\notin-2;-5;-10;-17\right)\)
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)
Với \(x\notin1;3;8;20\)
\(\frac{x+1}{10}+\frac{2+1}{11}\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{x-10}{30}+\frac{x-14}{43}+\frac{x-5}{95}+\frac{x-148}{8}=0\)
tìm x
\(\frac{\left(x+1\right)}{15}+\frac{\left(x+2\right)}{14}+\frac{\left(x+3\right)}{13}+\frac{\left(x+4\right)}{12}+\left(x+20\right)=0\)