Xét x, y là các số thực không âm thỏa mãn điều kiện x+y=2 Tìm giá trị nhỏ nhất của biểu thức S= x 2 y 2 - 4 x y
A.
B.
C.
D.
Cho các số thực dương x, y thỏa mãn: x + y = 5 4 thì biểu thức S = 4 x + 1 4 y đạt giá trị nhỏ nhất khi x = a y = b thì a.b có giá trị là bao nhiêu?
A. a . b = 3 8
B. a . b = 25 64
C. a . b = 0
D. a . b = 1 4
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y ( x - 2 ) .Tính giá trị nhỏ nhất của biểu thức T = x + y
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y ( x - 2 ) .
Tính giá trị nhỏ nhất của biểu thức T = x + y .
Cho x, y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 − x − 2 y + y x − 2 . Tính giá trị nhỏ nhất của biểu thức T=x+y
A. T min = 2 + 3 2
B. T min = 3 + 2 3
C. T min = 3 2
D. T min = 5 + 3 2
Cho x,y là các số thực dương thỏa mãn điều kiện 5 x + 2 y + 3 3 x y + x + 1 = 5 x y 5 + 3 - x - 2 y + y x - 2
Tính giá trị nhỏ nhất của biểu thức T =x + y.
A. T m i n = 2 + 3 2
B. T m i n = 3 + 2 3
C. T m i n = 1 + 5
D. T m i n = 5 + 3 2
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 4
Cho ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện góc AMB = 90o. Diện tích tam giác AMB có giá trị lớn nhất là:
A. 4
B. 2
C. 4π
D. Không tồn tại
Cho các số thực x; y thõa mãn x≥0; y≥0 và x+y=1. Giá trị lớn nhất M , giá trị nhỏ nhất m của biểu thức S = ( 4 x 2 + 3 y ) ( 4 y 2 + 3 x ) + 25 x y là:
A. M = 25 2 ; m = 191 16 .
B. M = 12 ; m = 191 16 .
C. M = 25 2 ; m = 12 .
D. M = 25 2 ; m = 0 .
Cho x,y,z,a,b,c là các số thực thay đổi thỏa mãn ( x + 3 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 2 và a+b+c=1. Giá trị nhỏ nhất của biểu thức P = ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 là
A. 3 - 2
B. 3 + 2
C. 5 - 2 6
D. 5 + 2 6