Xét tam giác ABC có độ dài các cạnh đối diện 3 góc A, B, C là a, b, c. CMR: r a = 2 S b + c − a = p.tan A2 với r a là bán kính đường tròn bàng tiếp góc A , p là nửa chu vi, S là diện tích của tam giác ABC
Giúp mik vs mik đang cần gấp !!!!!!
Giúp mk với:
Cho tam giác ABC với S là diện tích và p là nửa chu vi tam giác ABC. Gọi r là bán kính đường tròn bàng tiếp góc A. CMR:
\(r=\frac{S}{p-a}\)
cho đường tròn [ I;r] nội tiếp tam giác ABC tiếp xúc với các cạnh AB và AC lần lượt tại D và E. đường tròn [ K;ra] là đường tròn bàng tiếp trong góc A tiếp xúc với BC tại F tiếp xúc phần kéo dài của 2 cạnh AB; AC lần lượt tại M;N. cho AB=c; BC=a; AC=b; nửa chu vi tam giác ABC=p. chứng minh
a: AD=AE=p-a
b: AM=AN=p
c: diện tích tam giác ABC= p.r
d: diện tích tam giác ABC=[p-a].ra
Gọi a,b,c là số đo 3 cạnh của tam giác ABC , r là bán kính đường tròn nội tiếp tam giác . Tính diện tích tam giác theo p và r, trong đó p là nửa chu vi tam giác
Giúp mk với:
Cho tam giác ABC với S là diện tích và p là nửa chu vi tam giác ABC. Gọi r là bán kính đường tròn nội tiếp góc A. CMR:\(r=\frac{S}{p}\)
trong tam giác ABC, a,b,c là độ dài các cạnh BC,AC,AB; 2p là chu vi ; S là diện tích; r,rA,rB,rC là bán kính của đường tròn nội tiếp và các đường tròn bàng tiếp trong các góc A,B,C. Đường tròn bàng tiếp trong góc A tiếp xúc với các đường thẳng AB và AC tại F' và E'
a/ CM AE' =AF' =p
b/ CM AE = AF = p - a
c/ CM S = pr = (p-a)rA = (p-b)rB = (p-c)rC
d/ CM \(\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
a, Cho tam giác ABC nhọn. CMR:\(h_a+h_b+h_c\ge9r\) với r là bán kính đường tròn nội tiếp tam giác ABC
b, CM
\(\dfrac{1}{m_a}+\dfrac{1}{m_b}+\dfrac{1}{m_c}\ge\dfrac{2}{R}\)
( \(m_a,m_b,m_c\) là độ dài các đường trug tuyến ứng với cạnh a,b,c và
R là bán kính đường tròn ngoại tiếp tam giác ABC)
Cho tam giác ABC. Gọi ha, hb, hc là các đường cao và ra, rb, rc, là các bán kính của các đường tròn bàng tiếp các góc A, B, C của tam giác ABC. r là bán kính đường tròn nội tiếp. CMR:
a)\(\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
b) \(\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)
1.Cho tam giác ABCcó độ dài các cạnh là: a,b,c . Độ dài các đường trung tuyến tương ứng là ma, mb, mc.
CM: \(\frac{a}{m_a}+\frac{b}{m_b}+\frac{c}{m_c}\ge2\sqrt{3}\)
2. Tìm MaxP= sinP + cosP
Với P là số đo góc nhọn trong tam giác ABC vuông .
3.Cho tam giác ABC có chu vi bằng 3 cm, góc A=60.Tính giá trị lớn nhất của diện tích tam gIác ABC
4.Cho (O) và một đểm A cố định nằm ngoài đường tròn .Xét đường kính BC. Tìm vị trí đường kính BC để AB+AC đạt giá trị nhỏ nhất