Đáp án A.
Kí hiệu học sinh các lớp 12A, 12B,12C
lần lượt là A,B,C.
Ta sẽ xếp 5 học sinh của lớp 12C trước,
khi đó xét các trường hợp sau:
TH1: CxCxCxCxCx với x thể hiện là
ghế trống.
Khi đó, số cách xếp là 5!5! cách.
TH2: xCxCxCxCxC giống với TH1
⇒ có 5!5! cách xếp.
TH3: CxxCxCxCxC với xx là hai ghế
trống liền nhau.
Chọn 1 học sinh lớp 12A và 1 học sinh
lớp 12B vào 2 ghế trống ⇒ 2.3.2! cách
xếp. Ba ghế trống còn lại ta sẽ xếp 3 học
sinh còn lại của 2 lớp 12A-12B
⇒ 3! cách xếp.
Do đó, TH3 có 2.3.2!.3!.5! cách xếp.
Ba TH4. CxCxxCxCxC.
TH5. CxCxCxxCxC.
TH6. CxCxCxCxCxx tương tự TH3.
Vậy có tất cả 2.5!5!+4.2.3.2!.3!.5!=63360
cách xếp cho các học sinh.
Suy ra xác suất cần tính là P = 63360 10 ! = 11 630 .