Xác định các giá trị của m để phương trình x^2 -x+1-m =0 có hai nghiệm x1;x2 thỏa mãn đẳng thức \(5.\left(\dfrac{1}{x1}+\dfrac{1}{x2}\right)-x1.x2+4=0\)
Mọi người ơi, giúp em bài này với ạ, em cần rất gấp ạ, em cảm ơn rất nhiều ạ. (Nếu có thể giải chí tiết phần thay S và P vào đẳng thức được không ạ? Em cảm ơn rất nhiều ạ.)
Xác định giá trị của tham số m để hệ phương trình x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5 có nghiệm duy nhất.
A. m ≠ 0
B. m ≠ 2
C. m ≠ {0; 3}
D. m = 0; m = 3
Cho phương trình \(x^4+\left(1-2m\right)x^2+m^2-1=0\)
a. Định m để pt vô nghiệm.
b. Định m để pt có 2 nghiệm phân biệt.
c. Định m để pt có 3 nghiệm phân biệt.
d. Định m để pt có 4 nghiệm phân biệt.
(Giải chi tiết giúp em em cảm ơn ạ)
Cho pt (m+3)\(x^2\)+(m-1)x+(m-1)(m+4)
a)định m để phương trình có nghiệm kép
b) định m để phương trình có 1 nghiệm duy nhất
Cho hệ phương trình:
mx + y = 5
2x - y = 0
a)Giải hệ phương trình với m = 5
b)Xác định m để hệ phương trình có nghiệm duy nhất và thỏa mãn: x + y = 12
giúp em câu b với ạ
Giúp e giải câu này với ạ. Em cảm ơn Cho phương trình : (m-1)x²-x+3 =0 a) xác định giá trị của m để pt có nghiệm b) xác định m để pt có tổng bình phương hai nghiệm bằng 12
Cho HPT
\(\hept{\begin{cases}x^2y+xy^2=3m-5\\x+y+xy=m+1\end{cases}}\)
a) Xác định m để HPT có 1 nghiệm duy nhất.
b) Xác định m để HPT có 2 nghiệm phân biệt
Cho HPT: \(\hept{\begin{cases}x-y=m\\x^2+y^2=1\end{cases}}\). Xác định m để hệ có nghiệm duy nhất. Tìm nghiệm đó
Cho HPT: \(\hept{\begin{cases}x-y=m\\x^2+y^2=1\end{cases}}\). Xác định m để hệ có nghiệm duy nhất. Tìm nghiệm đó