\(\left(2x-\sqrt{2}\right)^2-1=\left(x+1\right)\left(x-1\right)\)
=>\(4x^2-4x\sqrt{2}+2-1-x^2+1=0\)
=>\(3x^2-4x\sqrt{2}+2=0\)
\(a=3;b=-4\sqrt{2};c=2\)
\(\text{Δ}=b^2-4ac=\left(-4\sqrt{2}\right)^2-4\cdot3\cdot2=8>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=\dfrac{4\sqrt{2}-2\sqrt{2}}{6}=\dfrac{2\sqrt{2}}{6}=\dfrac{\sqrt{2}}{3}\\x=\dfrac{4\sqrt{2}+2\sqrt{2}}{6}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\end{matrix}\right.\)
