=>x^4-x^3+x^2+x^3-x^2+x+ax^2-x+b chia het cho x^2-x+1
=>ax^2-x+b=0
=>a=0 va b=-1
\(x^4+ax^2+b=\left(x^2-x+1\right)\left(x^2+x+a\right)+\left(a-1\right)x+b-a\)
\(x^4+ax^2+b\) chia hết cho \(x^2-x+1\)
\(\Rightarrow\left(a-1\right)x+b-a=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-1=0\\b-a=0\end{matrix}\right.\Leftrightarrow a=b=1\)