ta có x^2+x-2=x^2+2x-x-2=x(x+2)-(x+2)=(x-1)(x+2)
f(x) chia hết cho (x^2+x-2) nếu tồn tại đa thức q(x) sao cho
f(x)=q(x).(x^2+x-2)
=>f(x)=q(x).(x-1)(x+2)
f(1)=1^3+a.1+b=q(1).(1-1).(1+2)=0=> a+b+1=0=>a+b=-1 (1)
f(-2)=(-2)^3+a.(-2)+b=q(2).(-2-1).(-2+2)=0=>-8-2a+b=0=>-2a+b=8 (2)
Lấy (2) trừ chi (1)
-2a+b-a-b=8+1
=>-3a=9=>a=-3=>b=2
Vậy a=-3;b=2
Ta có:x2+x-2
=x2+2x-x-2=x(x+2)-(x+2)
=(x-1)(x+2)
f(x)chia hết cho x2+x-2<=>f(x)=q(x)(x2+x-2)
=>f(x)=q(x)(x-1)(x+2)
f(1)=13+1a+b
=q(1)(1-1)(1+2)=0
=>a+b+1=0
=>a+b=-1(*)
f(-2)=(-2)3+a(-2)+b
=q(2)(-2-1)(-2+2)=0
=>-8-2a+b=0
=>-2a+b=8(2*)
Lấy (2*) trừ đi(*) ta được
-2a+b-a-b=8+1
=>-3a=9
=>a=-3 =>b=2
vậy a=-3,b=-2