ta có x/5 = y/3 => (x/5)2 = (y/3)2 => x2/25 = y2/9 = x2-y2 / 25-9 = 4/16 = 1/4
=> x=5/2 ; y=3/2
Đặt \(\frac{x}{5}=\frac{y}{3}=k\left(k\ne0\right)\Rightarrow\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)
Thay x = 5k và y = 3k vào biểu thức \(x^2-y^2=4\)ta được:
\(\left(5k\right)^2-\left(3k\right)^2=4\)
\(25k^2-9k^2=4\)
\(16k^2=4\)
\(k^2=\frac{4}{16}=\frac{1}{4}\)
\(k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\frac{1}{2}\)hay \(k=-\frac{1}{2}\)
Trường hợp 1:
Thay \(k=\frac{1}{2}\)vào biểu thức \(\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)ta được:
\(\Rightarrow\hept{\begin{cases}x=5\cdot\frac{1}{2}\\y=3\cdot\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{3}{2}\end{cases}}\)
Trường hợp 2:
Thay \(k=-\frac{1}{2}\)vào biểu thức \(\hept{\begin{cases}x=5k\\y=3k\end{cases}}\)ta được:
\(\Rightarrow\hept{\begin{cases}x=5\cdot\left(-\frac{1}{2}\right)\\y=3\cdot\left(-\frac{1}{2}\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{3}{2}\end{cases}}\)