\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\) và \(x^2+2y^2-3z^2=650\)
\(\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{3}\right)^3=\left(\frac{z}{4}\right)^3\)\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
\(\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{650}{-26}=-25\)
\(\Rightarrow\frac{x^2}{4}=-25\Rightarrow x^2=-100\Rightarrow x\in\varnothing\)
\(\Rightarrow\frac{y^2}{9}=-25\Rightarrow y^2=-225\Rightarrow y\in\varnothing\)
\(\Rightarrow\frac{z^2}{16}=-25\Rightarrow z^2=-400\Rightarrow z\in\varnothing\)
Vậy không có \(\left(x;y;z\right)\)thoả mãn