Bạn cần bổ sung thêm điều kiện của $x,y,z$ để giải chứ mỗi PT này thì có rất nhiều $x,y,z$ thỏa mãn.
Bạn cần bổ sung thêm điều kiện của $x,y,z$ để giải chứ mỗi PT này thì có rất nhiều $x,y,z$ thỏa mãn.
cho x+y+z=1, x^2+y^2+z^2=1, x^3+y^3+z^3=1 tính x^2009+y^2010+z^2011
Cho các x,y,z thỏa mãn đồng thời : x+y+z =1 ; x2 +y2 + z2 = 1 ; x3 +y3 + z3 = 1 .Tính tổng : S = x2009 + y2009 + z2009
cho x,y,z là các số khác 0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)và \(x^3+y^3+z^3=2^9\).Tính giá trị biểu thức \(P=x^{2009}+y^{2009}+z^{2009}\)
TÌM các số x,y,z,biết
x^2+y^2+z^2=xy+yz+zx và x^2009+y^2009+z^2009=3^2010
Tìm x,y,z biết:
\(x^2+y^2+z^2=xy+yz+xz\)và \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
chung minh rang khong co gia tri nguyen nao cua x,y,z thoa man :x^3+y^3+x^3=x+y+z+2009
Tìm các số x,y,z biết :x2+y2+z2= xy+yz+zx và x2009+y2009+z2009=32010
Tìm các số x,y,z biết: \(x^2+y^2+z^2=xy+yz+zx\) và \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
Cho 3 số x,y,z thỏa mãn điều kiện xyz = 2009. CMR: biểu thức sau không phụ thuộc vào các biến x,y,z:
\(\frac{2009x}{xy+2009x+2009}+\frac{y}{yz+y+2009}+\frac{z}{xz+z+1}\)