x2( x + 1 )2 + 2x2 + 2x - 8
= [ x( x + 1 ) ]2 + 2( x2 + x ) - 8
= ( x2 + x )2 + 2( x2 + x ) - 8 (*)
Đặt a = x2 + x
(*) = a2 + 2a - 8
= a2 - 2a + 4a - 8
= a( a - 2 ) + 4( a - 2 )
= ( a - 2 )( a + 4 )
= ( x2 + x - 2 )( x2 + x + 4 )
= ( x2 - x + 2x - 2 )( x2 + x + 4 )
= [ x( x - 1 ) + 2( x - 1 ) ]( x2 + x + 4 )
= ( x - 1 )( x + 2 )( x2 + x + 4 )
ta co
\(x^2\left(x+1\right)^2+2x^2+2x-8\)
=\(\left(x\left(x+1\right)\right)^2+2x\left(x+1\right)+1-9\)
=\(\left(x^2+x+1\right)^2-9\)
=\(\left(x^2+x-8\right)\left(x^2+x+10\right)\)
=\(\left(x^2+2x\frac{1}{2}+\frac{1}{4}-\frac{33}{4}\right)\left(x^2+x+10\right)\)
=\(\left(\left(x+\frac{1}{2}\right)^2-\frac{33}{4}\right)\left(x^2+x+10\right)\)
=\(\left(x+\frac{1}{2}-\sqrt{\frac{33}{4}}\right)\left(x+\frac{1}{2}+\sqrt{\frac{33}{4}}\right)\left(x^2+x+10\right)\)
mik xin lỗi
\(\left(x^2+x+4\right)\left(x^2+x-2\right)\))
=\(\left(x^2+x+4\right)\left(x^2+2x-x-2\right)\)
=\(\left(x^2+x+4\right)\left(x+2\right)\left(x-1\right)\)