Ta có : \(\hept{\begin{cases}\left|x^2+x-2\right|\ge0\forall x\\\left|x^2-1\right|\ge0\forall x\end{cases}}\Rightarrow\left|x^2+x-2\right|+\left|x^2-1\right|\ge0\forall x\)
Đẳng thức |x2 + x - 2| + |x2 - 1| = 0 xảy ra
<=> \(\hept{\begin{cases}x^2+x-2=0\\x^2-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+2x-x-2=0\\x^2=1\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)\left(x-1\right)=0\\x^2=1\end{cases}}\)
+) Nếu : (x + 2)(x - 1) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
+) Nếu x2 = 1
=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1