Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9.\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{4x^2+12x+9}=5\)
\(\sqrt{5x-6}-3=0\)
P=\(\left(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\right).\left(\frac{1}{1-\sqrt{x}}-1\right)\)
Giải pt sau :\(\frac{25}{x}+9\sqrt{9x^2-4}=\frac{2}{x}+\frac{18}{x^2+1}\)
B2: Cho x;y >0 .Tìm min \(B=\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)\left(2+x+y\right)\)
RÚT GON:
\(1.\)\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(2.\)\(\frac{\left(x+\sqrt{x}+1\right)^2+1}{\left(x+1\right)^2}-\frac{\left(x-\sqrt{x}-1\right)^2-1}{\left(1-x\right)^2}\)
\(3.\)\(\frac{3x+\sqrt{9x}-3}{3+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{1-\sqrt{x}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\left(1\right)\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\left(2\right)\end{cases}}\)
Giải hệ phương trình sau:
\(\hept{\begin{cases}\left(9x^2+2\right)x+\left(y-2\right)\sqrt{4-3y}=0\\9x^2+y^2+\frac{4}{3}\sqrt{2-3x}=\frac{10}{3}\end{cases}}\)
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)