x=3/2-3*căn bậc hai(5)/2
, x=3*căn bậc hai(5)/2+3/2
; x = -(3^(3/2)*i+9)/2;
x = (3^(3/2)*i-9)/2;
x=3/2-3*căn bậc hai(5)/2
, x=3*căn bậc hai(5)/2+3/2
; x = -(3^(3/2)*i+9)/2;
x = (3^(3/2)*i-9)/2;
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
GIẢI PHƯƠNG TRÌNH
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^3-2y^2-12y=26\\x^2y^2+9x^2-3y^2-6y=27\end{matrix}\right.\)
Giải phương trình : \(\left(\dfrac{x}{x+2}\right)^2=3x^2-6x-3\)
\(\sqrt{x+5}=x^2-5\)
\(\sqrt{x-1}-\sqrt[3]{2-x}=5\)
P=\(\left(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}\right).\left(\frac{1}{1-\sqrt{x}}-1\right)\)
Giải pt sau :\(\frac{25}{x}+9\sqrt{9x^2-4}=\frac{2}{x}+\frac{18}{x^2+1}\)
B2: Cho x;y >0 .Tìm min \(B=\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)\left(2+x+y\right)\)
RÚT GON:
\(1.\)\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(2.\)\(\frac{\left(x+\sqrt{x}+1\right)^2+1}{\left(x+1\right)^2}-\frac{\left(x-\sqrt{x}-1\right)^2-1}{\left(1-x\right)^2}\)
\(3.\)\(\frac{3x+\sqrt{9x}-3}{3+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(x^2+\frac{9x^2}{\left(x+3\right)^2}=40\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9x}{5}\left(1\right)\\\frac{x}{y}=\frac{5+3x}{6\left(5-y\right)}\left(2\right)\end{cases}}\)