\(\left(x+2\right)^5-\left(x-2\right)^5=64\)
\(\Rightarrow x^5+10x^4+40x^3+80x^2+80x+32-\left(x^5-10x^4+40x^3-80x^2+80x-32\right)=64\)
\(\Rightarrow20x^4+160x^2+64=64\)
\(\Rightarrow20x^4+160x^2=0\)
\(\Rightarrow20x^2\left(x^2+8\right)=0\)
mà \(x^2+8>0\)
\(\Rightarrow x^2=0\Rightarrow x=0\)
\(\Leftrightarrow x^5+10x^4+40x^3+80x^2+80x+32-x^5+10x^4-40x^3+80x^2-80x+32=64\)
\(\Rightarrow20x^4+160x^2+54-64=0\)
\(\Rightarrow20x^4+160x^2=0\)
\(\Leftrightarrow20x^2\left(x^2+8\right)=0\)
\(\Leftrightarrow x=0\)
Do \(x^2+8=\ge0\)(luôn đúng)
Vây: \(x^2\ge-8\)