x2 + 2x - 3
= x2 - x + 3x - 3
= x(x - 1) + 3(x - 1)
= (x + 3)(x - 1)
x2 + 2x - 3
= x2 - x + 3x - 3
= x(x - 1) + 3(x - 1)
= (x + 3)(x - 1)
tìm x : a) (x + 1)^3 + (3 - 2)^3 = 2x^3 + 2(2x - 1)^2 - 9
b) (3x^3+24) : (x+2) + (2x^3−54) : (x^2+3x+9) = 6
1.tìm x:
c.2x^2=x
d.x^3=x^5
e.x^2(x+1)+2x(x+1)=0
g.x(2x-3)-2(3-2x)=0
Tìm x:
a) 5x2(2x-3)+(2x2+3x+3)(3-2x)=6x3-9x2
b) (4x2+2x)(x2-x)+(4x2+6)(x-x2)=0
tim x
a) 4(2x+7)^2-9(x+3)^2=0
b) (5x^2-2x+10)^2=(3x^2+10x -8 )^2
c) (x-3)^2-4=0
d) x ^2-2x=24
(2x+3)^2+(2x-3)^2+(2x+3)(4x-6)+xy
x^2+x-y^2+y
3x^2+3y^2-6xy-12
x^3-x+3x^2y+3xy^2-y+y^3
2018x^2-2019x+1=0
Phân tích đa thức thành nhân tử:
1). (x - 3)(x - 1) - 3(x - 3)
2). (6x + 3) - (2x - 5)(2x + 1)
3). (x - 1)(2x + 1) + 3(x - 1)(x + 2)(2x + 1)
4). (3x - 2)(4x - 3) - (2 - 3x)(x - 1) - 2(3x - 2)(x + 1)
5). \(\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\)
6). (a - b)(a + 2ab) - (b - a)(2a - b) - (a - b)(a + 3b)
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
tìm x biết
a) x(x-5)=5-x
b) (2x+3)(x-1)+(2x-3)(1-x)=0
c) (x+2)2=x+2
d) x3-2x=0
3x(-x^2+2x+3)-26x^2(-x^2+2x+3)-9x^4