`|x+2| + |x+3/5| + |x+1/2| =4x`
Do:
`|x+2| >= 0`
`|x+3/5| >= 0`
`|x+1/2| >= 0`
`=> |x+2| + |x+3/5| + |x+1/2| >= 0`
`=> 4x >=0`
mà `4 > 0 => x >= 0`
Khi đó: `|x+2| + |x+3/5| + |x+1/2| = x + 2 + x + 3/5 + x + 1/2 = 3x + 31/10`
`=> 3x + 31/10 = 4x`
`=> x = 31/10`