\(\left\{x^2-\left[6^2-\left(8^2-9.7\right)^3-7.5\right]^3-5.3\right\}^3=1\)
\(\Leftrightarrow\left\{x^2-\left[6^2-\left(8^2-\left(8+1\right).\left(8-1\right)\right)^3-\left(6+1\right).\left(6-1\right)\right]^3-5.3\right\}^3=1\)
\(\Leftrightarrow\left\{x^2-\left[6^2-\left(8^2-8^2+1\right)^3-6^2+1\right]^3-5.3\right\}^3=1\)
\(\Leftrightarrow\left\{x^2-\left[6^2-1-6^2+1\right]^3-5.3\right\}^3=1\)
\(\Leftrightarrow\left\{x^2-5.3\right\}^3=1\)
\(\Leftrightarrow x^2-15=1\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\left\{x^2-\left[6^2-\left(8^2-9.7\right)-7.5\right]^3-5.3\right\}^3=1\)
\(\Rightarrow x^2-\left[6^2-\left(64-63\right)^3-35\right]^3-5.3=1\)
\(\Rightarrow x^2-\left(36-1^3-35\right)^3-15=1\)
\(\Rightarrow x^2-0^3-15=1\)
\(\Rightarrow x^2=1+15\)
\(\Rightarrow x^2=16\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
{ x2 - [ 62 - ( 82 - 9 . 7 )3 - 7 . 5 ]3 - 5 . 3 }3 = 1
{ x2 - [ 36 - ( 64 - 63 )3 - 35 ]3 - 15 }3 = 1
{ x2 - [ 36 - 13 - 35 ]3 - 15 }3 = 1
{ x2 - [ 36 - 1 - 35 ]3 - 15 }3 = 1
{ x2 - 0 - 15 }3 = 1
{ x2 - 1 - 15 }3 = 1
=> x2 - 15 = 1
=> x2 = 16
=> x = { 4 ; -4 }