\(\Leftrightarrow x^2+3x^2+15x-3x-15-25=0\)
\(\Leftrightarrow4x^2+12x-40=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
\(\Leftrightarrow x^2+3x^2+15x-3x-15-25=0\)
\(\Leftrightarrow4x^2+12x-40=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
Tìm x,biết:
a)6x2-(2x+5).(3x-2)=-12
b)(x+3).(x2-3x+9)-x.(x2+2)=12-5x
c)x2-25=6x-9
C= 2x / x-3 - 3x+9/ x2 - 9
D= (15-x/ x2 - 25 + 2/ x+5 ) : x + 1/ x - 5
Bài 5. Tìm x , biết rằng: a) x(x + 5)(x – 5) – (x + 2)(x2 – 2x + 4) = 3
b) (x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
c) (x+5)(x2 –5x +25) – (x – 7) = x3
d) (x+2)(x2 – 2x + 4) – x(x2 + 2) = 4
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Phân tích đa thức thành nhân tử:
a)x2-9+2.(x+3)
b)x2-10x+25-3.(x-5)
c)x3-4x2+3x
Bài 3: Giải các phương trình sau:
a, 2x3 - 50x = 0
b, 2x (3x - 5) - (5 - 3x)
c, 9(3x - 2) = x(2 - 3x)
d, (2x - 1)2 - 25 = 0
e, 25x2 - 2 = 0
f, x2 - 25 = 6x - 9
g, 5x(x - 3) - 2x + 6 = 0
h, 3x(x - 7) - 2(x - 7) = 0
i, 7x2 - 28 = 0
j, (2x + 1) + x(2x + 1) = 0
k, (x + 2)2 - (x - 2)(x + 2) = 0
l, x3 + 5x2 - 4x - 20 = 0
m, x2 - 25 + 2(x + 5) = 0
n, x3 - 3x + 2 = 0
o, x2 - 6x + 8 = 0
p, x2 - 5x - 14 = 0
q, (x - 2)2 - (x - 3)(x + 3) = 6
r, (2x - 1)2 - (2x + 5)(2x - 5) = 18
Bài 1 Rút gọn biểu thức
a, [(3x - 2)(x + 1) - (2x + 5)(x2 - 1)] : (x + 1)
b, (2x + 1)2 - 2(2x + 1)(3 - x) + (3 - x)2
c, (x - 1)2 - (x + 1) (x2 - x + 1) - (3x + 1)(1 - 3x)
d, (x2 + 1)(x - 3) - (x - 3)(x2 + 3x + 9)
e, (3x +2)2 + (3x - 2)2 - 2(3x + 2)(3x - 2) + x
Bài 2 Phân tích các đa thức sau thành nhân tử
1, 3(x + 4) - x2 - 4x
2, x2 - xy + x - y
3, 4x2 -25 + (2x + 7)(5 - 2x)
4, x2 + 4x - y2 + 4
5, x3 - x2 - x + 1
6, x3 + x2y - 4x - 4y
7, x3 - 3x2 + 1 - 3x
8, 2x2 + 3x - 5
9, x2 - 7xy + 10y2
10, x3 - 2x2 + x - xy2
Bài 2: (2 điểm) Tìm x, biết:
a) (3x + 4)2 – (3x – 1)(3x + 1) = 49
b) x2 – 4x + 4 = 9(x – 2)
c) x2 – 25 = 3x - 15
d) (x – 1)3 + 3(x + 1)2 = (x2 – 2x + 4)(x + 2)
Ai giải giúp mk 3 bài này với ạ:
a) 6x2 - (2x + 5)(3x - 2) = 7
b) (5 - x)(25 + 5x + x2) + x (x2 - 7) = 25
c) (7 - 2x)2 + (3 + 2x)(3 - 2x) = 30
Mk cảm ơn rất nhiều ạ:3