\(\left(x+\dfrac{1}{3}\right)^2=\dfrac{1}{25}\\ \Rightarrow\left(x+\dfrac{1}{3}\right)^2=\left(\pm\dfrac{1}{5}\right)^2\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{1}{5}\\x+\dfrac{1}{3}=-\dfrac{1}{5}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{15}\\x=-\dfrac{8}{15}\end{matrix}\right.\)
\(\left(x+\dfrac{1}{3}\right)^2=\dfrac{1}{25}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=\dfrac{1}{5}\\x+\dfrac{1}{3}=-\dfrac{1}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{15}\\x=-\dfrac{8}{15}\end{matrix}\right.\)
Vậy phương trình có nghiệm \(S=\left\{-\dfrac{2}{15};-\dfrac{8}{15}\right\}\)