(x+1/2)+(x+1/4)+(x+1/8)+(x+1/16)=1
<=>(x+x+x+x)+(1/2+1/4+1/8+1/16)=1
<=>4x+15/16=1
=>4x=1-15/16=1/16
=>x=1/16:4
=>x=1/64
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\frac{15}{16}=1\)
\(4x=1-\frac{15}{16}=\frac{1}{16}\)
\(x=\frac{1}{16}:4=\frac{1}{64}\)