\(\left(\times-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\cdot\cdot\cdot+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right)=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow\times-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow\times=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow\times=\frac{21}{55}\)
\(\left(x-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow x-\frac{1}{5}=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow x-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow x=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow x=\frac{21}{55}\)
Vậy \(x=\frac{21}{55}\)