(x-1)2=4x+1
<=> x2-2x+1=4x+1
<=>0=2x-x2
<=> x(2-x)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2
\(\left(x-1\right)^2=4x+1\)
\(\Leftrightarrow x^2-2x+1=4x+1\)
\(\Leftrightarrow x^2-2x-4x=1-1\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy\(x\in\left\{0;6\right\}\)
(x-1)2=4x+1
<=> x2-2x+1=4x+1
<=> 1-1=4x+2x-x2
<=> 0=6x-x2
<=> x(6-x)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\6-x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy....