\(S=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right)=\left(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\right).\left(x+y+z\right)\) (do x+y+z=1 nên michf nhân vào kết quả sẽ ko bị thay đổi)
\(S=\frac{21}{16}+\left(\frac{x}{4y}+\frac{y}{16x}\right)+\left(\frac{x}{z}+\frac{z}{16x}\right)+\left(\frac{y}{z}+\frac{z}{4y}\right)\)
AD BĐT cô si,ta có:
\(S\ge\frac{21}{16}+2.\sqrt{\frac{x}{4y}.\frac{y}{16x}}+2\sqrt{\frac{x}{z}.\frac{z}{16x}}+2.\sqrt{\frac{y}{z}.\frac{z}{4y}}=\frac{21}{16}+\frac{1}{4}+\frac{1}{2}+1=\frac{49}{16}\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}4x=2y=z\\x+y+z=1\\x;y;z>0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}}\)
T=116x+14y+1zT=116x+14y+1z ; x + y + z = 1
⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz
=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1
=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz) (1)
x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0
áp dụng bđt cô si :
y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14 (2)
z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12 (3)
x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1 (4)
(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1
⇒T≥4916⇒T≥4916
dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2
⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1
=> x + 2x + 4x = 1
=> x = 1/7
xong tìm ra y = 2/7 và z = 4/7
T=116x+14y+1zT=116x+14y+1z ; x + y + z = 1
⇒T=x+y+z16x+x+y+z4y+x+y+zz⇒T=x+y+z16x+x+y+z4y+x+y+zz
=116+y16x+z16x+x4y+14+z4y+xz+yz+1=116+y16x+z16x+x4y+14+z4y+xz+yz+1
=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz)=(116+14+1)+(y16x+x4y)+(z16x+xz)+(z4y+yz) (1)
x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0x;y;z>0⇒y16x;x4y;z16x;xz;z4y;yz>0
áp dụng bđt cô si :
y16x+x4y≥2√y16x⋅x4y=14y16x+x4y≥2y16x⋅x4y=14 (2)
z16x+xz≥2√z16x⋅xz=12z16x+xz≥2z16x⋅xz=12 (3)
x4y+yz≥2√z4y⋅yz=1x4y+yz≥2z4y⋅yz=1 (4)
(1)(2)(3)(4) ⇒T≥116+14+1+14+12+1⇒T≥116+14+1+14+12+1
⇒T≥4916⇒T≥4916
dấu "=" xảy ra khi \hept⎧⎪ ⎪⎨⎪ ⎪⎩y16x=x4yz16x=xzz4y=yz⇔\hept⎧⎨⎩4y2=16x2z2=16x2z2=4y2\hept{y16x=x4yz16x=xzz4y=yz⇔\hept{4y2=16x2z2=16x2z2=4y2
⇔\hept⎧⎨⎩y=2xz=4xz=2y⇔\hept{y=2xz=4xz=2y có x+y+z = 1
=> x + 2x + 4x = 1
=> x = 1/7
xong tìm ra y = 2/7 và z = 4/7
bạn tổng phước Zảu với cái bạn HOtory j đó viết linh tinh cái gì thế