với n>0, chứng tỏ rằng của B=căn bậc 2( 1+2+3+.......+n+(n-1)+............+2+1)=n
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
1:cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c\(\ne\)0;b\(\ne\)c) chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)
2: cho số tự nhiên n,chứng tỏ A=\(9^{n+2}+3^{n+2}-9^n+3^n⋮10\)
Chứng tỏ rằng
a)\(\frac{1}{2}\)\(+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^n}< 1\)n khác 0
Chứng tỏ rằng:
a. 1/n + 1/n+1 = 1/n - 1/n+1
b. Tính nhanh:
1/1 + 1/2 +1/2. 1/3 +1/3. 1/4 +.....+ 1/998 . 1/999 + 1/999 . 1/1000
giúp với 2like sẽ đến
chứng tỏ rằng S = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\) không là số tự nhiên với mọi
n\(\in\) N, n>2
1. Chứng tỏ rằng:
a. 1/n + 1/n+1 = 1/n + 1/n+1
b. 1/1 . 1/2 +1/2 . 1/3+ 1/3 . 1/4+.......+ 1/998 . 1/999+ 1/999. 1/1000
chứng tỏ rằng:1/5 + 1/13 +1/25 +...+1/n2+(n+1)2 < 1/2 với mọi n thuộc N
Chứng tỏ rằng các số có dạng
a)\(2^{2^n}+1\) có chữ số tận cùng bằng 7 (n>=2)
b)\(3^{2^n}+4⋮5\)