Đặt \(U_n=\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\) , \(a=\left(3+\sqrt{5}\right)^n\) , \(b=\left(3-\sqrt{5}\right)^n\)
Ta có : \(U_n=a+b\); \(U_{n+1}=\left(3+\sqrt{5}\right)a+\left(3-\sqrt{5}\right)b\);
\(U_{n+2}=\left(3+\sqrt{5}\right)^2a+\left(3-\sqrt{5}\right)^2b=\left(14+6\sqrt{5}\right)a+\left(14-6\sqrt{5}\right)b\)
\(=6\left(3+\sqrt{5}\right)a+6\left(3-\sqrt{5}\right)b-4a-4b\)
\(=6\left[\left(3+\sqrt{5}\right)a+\left(3-\sqrt{5}\right)b\right]-4\left(a+b\right)\)
\(=6U_{n+1}-4U_n\)
Vậy ..............................................