a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(-2\sqrt{2}+2\le x\le2\sqrt{2}+2\)
Với giá trị nào của x thì các căn thức sau có nghĩa:
a, \(\sqrt{5x-10}\)
b, \(\sqrt{x^2-3x+2}\)
c, \(\sqrt{\dfrac{x+3}{5-x}}\)
d, \(\sqrt{x^2+4x-4}\)
Với giá trị nào của x thì căn thức sau có nghĩa:
\(\sqrt{2x^2+4x+5}\)
Với giá trị nào của x thì mỗi căn thức sau đây có nghĩa:
a) \(\sqrt{\dfrac{x}{3}}\)
b) \(\sqrt{-5x}\)
c) \(\sqrt{4-x}\)
d) \(\sqrt{3x+7}\)
e) \(\sqrt{-3x+4}\)
f) \(\sqrt{\dfrac{1}{-1+x}}\)
g) \(\sqrt{1+x^2}\)
h) \(\sqrt{\dfrac{5}{x-2}}\)
Với giá trị nào của x thì các căn thức sau có nghĩa:
a) \(\sqrt{2x^2+4-5}\)
b)\(\sqrt{-x^2+4x+4}\)
với giá trị nào của x thì các biểu thức sau có nghĩa:
a) \(\sqrt{x^2-x+1}\)
b) \(\dfrac{5}{\sqrt{1-\sqrt{x-1}}}\)
c)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
d) \(\dfrac{\sqrt{-3x}}{x^2-1}\)
e) \(\dfrac{2}{\sqrt{x}-2}\)
tìm x để các biểu thức sau có nghĩa:
a)\(\sqrt{\left(x-2\right)}\)+\(\dfrac{1}{x-5}\) b)\(\sqrt{\left(2x-6\right)\left(7-x\right)}\) c)\(\sqrt{4x^2-25}\)
d)\(\dfrac{2}{x^2-9}\)-\(\sqrt{5-2x}\) e)\(\dfrac{x}{x^2-4}\)+\(\sqrt{x-2}\)
cho hai căn thức \(\sqrt{2x^2-4x+5}\) và \(\sqrt{2x^2+4x+2}\)
a, chứng tỏ rằng hai căn thức này được xác định với mọi giá trị của x
b, tìm các giá trị của x để \(\sqrt{2x^2-4x+5}\)> \(\sqrt{2x^2+4x+2}\)
với các giá trị nào của x thì các căn thức kia có nghĩa
\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}\)
\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)
a, với giá trị nào của a thì căn thức sau có nghĩa \(\sqrt{\frac{a^2+1}{1-2a}}\)
b, biểu thức sau xác định với giá trị vào của x \(\sqrt{5x^2+4x+7}\)