Đáp án A
Gọi M( 2+2t; 1+ mt) là điểm tùy ý thuộc ∆2
Để M nằm trên ∆1 khi và chi khi:
2( 2+ 2t) -3( 1+ mt) - m= 0 hay t( 4-3m) + 1- m= 0 n(*) luôn đúng với mọi t.
∆ 1 ≡ ∆ 2 ⇔ ( * ) thỏa với mọi t ⇔ 4 - 3 m = 0 1 - m = 0 (vô nghiệm)
Vậy không có m thỏa yêu cầu bài toán.



