Lời giải:
Với $d$ là số nguyên tố, nếu $a\not\vdots d$ thì $(a,d)=1$
$\Rightarrow (a^2,d)=1$
$\Rightarrow a^2\not\vdots d$ (trái với điều kiện đề)
Vậy $a\vdots d$
Lời giải:
Với $d$ là số nguyên tố, nếu $a\not\vdots d$ thì $(a,d)=1$
$\Rightarrow (a^2,d)=1$
$\Rightarrow a^2\not\vdots d$ (trái với điều kiện đề)
Vậy $a\vdots d$
cho f(x)= ax3+bx2+cx+d
a, Chứng minh nếu f(x) nhận giá trị nguyên với ,ọi x nguyên thì 6a, 2b, a+b+c, d đều là số nguyên
b Chứng minh rằng nếu 6a, 2b, a+b+c, d là các số nguyên thì f(x) nhân giá trị nguyên với mọi x nguyên
1. Trong mặt phẳng tọa độ xOy cho đường thẳng (d): y=ã+b. Tìm a và b biết (d) tiếp xức với parabol (P): y=x\(^2\)tại điểm A(-1; 1)
2. Chứng minh rằng nếu số nguyên K lớn hơn 1 thỏa mãn k\(^2\)+4 và k\(^2\)+16 là các số nguyên tố thì chia hết cho 5
Cho a,b,c,d là các số nguyên dương đôi một phân biệt thỏa mãn a+b=c+d=p ( p là số nguyên tố) Chứng minh tích abcd không là số chính phương
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
Cho đa thức P(x) = ax3 + bx2 + cx + d với a, b, c, d là các hệ số nguyên. Chứng minh rằng nếu P(x) chia hết cho 5 với mọi giá trị nguyên của x thì các hệ số a, b, c, d đều chia hết cho 5
Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận gt là 1 số nguyên D=\(\sqrt{\text{(a+1)(a+2)(a+4)(a+5)(a+6)+36}}\)
Chứng minh rằng với n là số nguyên tố lẻ thì 3n+2 là số nguyên tố
Mọi người giải giúp em với ạ!!
a) Tìm các số nguyên tố p để p2 + 2p cũng là số nguyên tố
b) Cho bốn sô thực a, b, c, d thõa mãn đồng thời a+b+c+d=7 và a2+b2+c2+d2=13. Hỏi a có thể nhận giá trị lớn nhất và nhỏ nhất là bao nhiêu?