Bạn tham khảo:
Bạn tham khảo:
Cho 3 số thực dương \(a;b;c\) thỏa mãn: \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2019\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^3+8}{a^3\left(b+c\right)}+\frac{b^3+8}{b^3\left(c+a\right)}+\frac{c^3+8}{c^3\left(a+b\right)}\) với a,b,c là các số thực dương thoả mãn abc=1
Cho a,b,c là 3 số thực thỏa mãn 0≤a,b,c≤1 . Tìm giá trị lớn nhất của biểu thức A=\(\left(a+b+c+3\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức \(Q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
cho 3 số thực dương a,b,c thỏa mãn a+b<_c. Tìm giá trị nhỏ nhất của biểu thức\(P=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
cho a,b,c là 3 số thực dương thỏa mãn abc=1. Tìm GTLN của biểu thức
\(P=\frac{1}{a\left(a+bc\right)+2b\left(b+ac\right)}+\frac{1}{b\left(b+ac\right)+2c\left(c+ab\right)}+\frac{1}{c\left(c+ab\right)+2a\left(a+bc\right)}\)
Cho hai số thực a, b thỏa mãn đk ab=1, \(a+b\ne0\). Tính giá trị biểu thức:
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+5\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cho các số thực dương a,b, c. Tìm GTNN của biểu thức
\(P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{bc}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{ca}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{ab}}+\frac{9\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{4\left(a+b+c\right)}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)