Tìm GTNN của biểu thức P=\(\frac{a^3+8}{a^3\left(b+c\right)}+\frac{b^3+8}{b^3\left(c+a\right)}+\frac{c^3+8}{c^3\left(a+b\right)}\) với a, b, c là các số thực dương thỏa mãn abc=1.
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{a\left(b^2+bc+c^2\right)}+\dfrac{1}{b\left(c^2+ca+a^2\right)}+\dfrac{1}{c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 6. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{\left(b+c\right)^2}+\frac{b^3}{\left(c+a\right)^2}+\frac{c^3}{\left(a+b\right)^2}\)
Cho ba số thực dương a,b,c > 0 thoả mãn a+b+c\(\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(S=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Với a, b là các số thực dương , tìm giá trị lớn nhất của biểu thức: \(M=\left(a+b\right)\left(\frac{1}{a^3+b}+\frac{1}{b^3+a}\right)-\frac{1}{ab}\)
Cho 3 số dương a,b,c thỏa mãn ab+bc+ca=8. Tìm giá trị nhỏ nhất của:
\(P=3\left(a^2+b^2+c^2\right)+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức \(Q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
Cho các số thực dương a,b, c. Tìm GTNN của biểu thức
\(P=\frac{a}{\sqrt[3]{a}+\sqrt[3]{bc}}+\frac{b}{\sqrt[3]{b}+\sqrt[3]{ca}}+\frac{c}{\sqrt[3]{c}+\sqrt[3]{ab}}+\frac{9\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{4\left(a+b+c\right)}\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)