Trong không gian Oxyz, cho đường thẳng d: x - 1 1 = y - 1 1 = z - 1 1 và mặt phẳng (P):x+2y+2z-5=0. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), vuông góc với d và cách điểm A(-5;-2;-2) một khoảng nhỏ nhất.
A. △ : x = 13 y = - 2 + t z = - 2 - t
B. △ : x = 1 y = 1 + t z = 1 - t
C. △ : x = - 3 y = 2 + t z = 2 - t
D. △ : x = - 5 y = 3 + t z = 2 - t
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 1 1 = z - 2 - 2 và mặt phẳng (P): x + 2y + z - 6 = 0. Mặt phẳng (Q) chứa d và cắt (P) theo giao tuyến là đường thẳng ∆ cách gốc tọa độ O một khoảng ngắn nhất. Viết phương trình mặt phẳng (Q)
A. x - y + z - 4 = 0
B. x + y + z + 4 = 0
C. x + y + z - 4 = 0
D. x + y - z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y + 1 1 = z + 1 2 và ∆ : x - 3 1 = y + 1 1 = z + 3 2 . Viết phương trình mặt phẳng (P) chứa d và tạo với tam giác một góc 30 ° . có dạng x + ay + bz + c = 0 với a , b , c , ∈ ℤ khi đó giá trị a + b + c là
A. 8
B. -8
C. 7
D. -7
Trong không gian Oxyz, cho đường thẳng d có phương trình x + 1 1 = y - 1 2 = x - 3 - 2 và mặt phẳng (P) có phương trình 2x-2y+z-3=0. Tìm góc giữa d và mặt phẳng (P).
A. 63º
B. 35º
C. 55º
D. 27º
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x-y-z+3=0 và điểm A(0;1;2), đường thẳng d: x - 1 1 = y + 3 - 2 = z - 1 1 . Mặt cầu ( S 1 ) , ( S 2 ) cùng tiếp xúc với (P) tại A và tiếp xúc với đường thẳng d. Tổng bán kính của hai mặt cầu bằng
A. 3 + 11
B. 12 3
C. 3 3
D. 10 3
Cho điểm A(-4;1;3) và đường thẳng d : x + 1 - 2 = y - 1 1 = z + 3 3 . Viết phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d
A. 2 x - y - 3 z + 36 = 0
B. 2 x - y - 3 z - 18 = 0
C. 2 x - y + 3 z = 0
D. 2 x - y - 3 z + 18 = 0
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3