Gọi phương trình đường thẳng d qua E có dạng:
\(a\left(x-2\right)+b\left(y+1\right)=0\Leftrightarrow ax+by-2a+b=0\)
\(d\left(F;d\right)=3\Leftrightarrow\dfrac{\left|-3a-b-2a+b\right|}{\sqrt{a^2+b^2}}=3\)
\(\Leftrightarrow\left|5a\right|=3\sqrt{a^2+b^2}\)
\(\Leftrightarrow25a^2=9a^2+9b^2\)
\(\Leftrightarrow16a^2=9b^2\Rightarrow\left\{{}\begin{matrix}4a=3b\\4a=-3b\end{matrix}\right.\)
Chọn \(\left(a;b\right)=\left(3;4\right);\left(3;-4\right)\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y-2=0\\3x-4y-10=0\end{matrix}\right.\)