Xét (O) có
\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến BM và dây cung BD
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{MBD}=\widehat{BAD}\)
Xét ΔMBD và ΔMAB có
\(\widehat{MBD}=\widehat{MAB}\)
\(\widehat{BMD}\) chung
Do đó: ΔMBD đồng dạng với ΔMAB
=>\(\dfrac{MB}{MA}=\dfrac{MD}{MB}\)
=>\(MB^2=MA\cdot MD\left(1\right)\)
Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(2)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(3)
từ (2),(3) suy ra MO là đường trung trực của BC
=>MO\(\perp\)BC tại H
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (1),(4) suy ra \(MH\cdot MO=MD\cdot MA\)