Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phươngtrinh

Từ một điểm M nằm ngoài đường tròn (O;R) kẻ hai tiếp tuyến MB MC đến đường tròn(o) sao cho MD<MA, C và D nằm ở hai nửa mặt phẳng khác nhau bờ OM. Gọi H là giao điểm của OM và BC . 

chứng minh MH.MO=MD.MA

Xét (O) có

\(\widehat{MBD}\) là góc tạo bởi tiếp tuyến BM và dây cung BD

\(\widehat{BAD}\) là góc nội tiếp chắn cung BD

Do đó: \(\widehat{MBD}=\widehat{BAD}\)

Xét ΔMBD và ΔMAB có

\(\widehat{MBD}=\widehat{MAB}\)

\(\widehat{BMD}\) chung

Do đó: ΔMBD đồng dạng với ΔMAB

=>\(\dfrac{MB}{MA}=\dfrac{MD}{MB}\)

=>\(MB^2=MA\cdot MD\left(1\right)\)

Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(2)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(3)

từ (2),(3) suy ra MO là đường trung trực của BC

=>MO\(\perp\)BC tại H

Xét ΔMBO vuông tại B có BH là đường cao

nên \(MH\cdot MO=MB^2\left(4\right)\)

Từ (1),(4) suy ra \(MH\cdot MO=MD\cdot MA\)


Các câu hỏi tương tự
duy đỗ nguyễn hải
Xem chi tiết
Son Nguyen Ngoc
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Lê Quỳnh Chi Phạm
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Tôm Tớn
Xem chi tiết
Lê Quốc Anh
Xem chi tiết
Minmin
Xem chi tiết