Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tứ giác ABCD có AB ⊥ CD. Gọi E, F, G, H theo thứ tự là trung điểm của BC, BD, AD, AC. Chứng minh rằng EG = FH.

Cao Minh Tâm
21 tháng 1 2019 lúc 6:05

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ∆ BCD, ta có:

E là trung điểm của BC (gt)

F là trung điểm của BD (gt)

Suy ra EF là đường trung bình của  ∆ BCD

⇒ EF // CD và EF = 1/2 CD (1)

* Trong  ∆ ACD, ta có: H là trung điểm của AC (gt)

G là trung điểm của AD (gt)

Suy ra HG là đường trung bình của  ∆ ACD

⇒HG // CD và HG = 1/2 CD (2)

Từ (1) và (2) suy ra: EF // HG và EF = HG

Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

* Mặt khác: EF // CD (chứng minh trên)

AB ⊥ CD (gt)

Suy ra EF ⊥ AB

Trong  ∆ ABC ta có HE là đường trung bình ⇒ HE // AB

Suy ra: HE ⊥ EF hay ∠ (FEH) = 90 0

Vậy hình bình hành EFGH là hình chữ nhật.


Các câu hỏi tương tự
giang đào phương
Xem chi tiết
Trần Đặng Kiều Giang
Xem chi tiết
Nguyễn Thị Kim Phương
Xem chi tiết
vương kiều linh
Xem chi tiết
Thi Phuong Trang Nguyen
Xem chi tiết
ahihu
Xem chi tiết
Diệp Vi
Xem chi tiết
Nguyễn Chibi
Xem chi tiết
Harry James Potter
Xem chi tiết