1.Từ điểm A ở ngoài đtròn (O) vẽ 2 tiếp tuyến AB và AC với đường tròn(O). Gọi M là trung điểm AB. Nối CM cắt đường tròn(O) tại E. AO cắt BC tại H. Tia AE cắt đường tròn (O) tại D
a. Chứng Minh MB bình=ME.MC và CD//AB
b. Vẽ OK vuông góc với ED tại K. Vẽ dây cung EN vuông góc với CK (N thuộc (O)). Cm B,O,N thẳng hàng
2.Cho điểm M nằm ngoài đtròn (O). Vẽ 2 tiếp tuyến MA,MB với đtròn. Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I.
a. Cm tg MAOB nội tiếp
b. Cm OH.OM+MC.MD=MO bình
c. Cm CI là tia pg của góc MCH
3. Từ điểm M nằm ngoài (O;R), vẽ 2 tiếp tuyến MA,MB và cát tuyến MCD với (O) (A,B là tiếp điểm và cát tuyến MCD nằm trong góc AMO, MC<MD). Gọi H là giao điểm của AB và OM
a) Cm tg MAOB nội tiếp, OM vuông góc AB
b) Cm AC.BD=AD.BC
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O) .Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H giao điểm của OA và BC.
a, Chứng minh OA vuông góc với BC tại H
b. Từ B vẽ đường kính BD của (O). đường thẳng AD cắt (O) tại E ( khác D).Chứng minh AE.AD = AH. AO
c.Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của (O).
Cho đường tròn tâm O bán kính R, A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn O, E là tiếp điểm. Vẽ dây EH vuông góc AD tại M.
a, cho biết R=5cm, OM=3cm. Tính độ dài dây EH.
b, Chứng minh AH là tiếp tuyến đường tròn(O)
c, Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn(O), F là tiếp điểm. Chứng minh ba điểm O,E,F thẳng hàng và BF.AE không đổi.
d, Trên tia HB lấy điểm I (I khác B). Qua I vẽ tiếp tuyến thứ 2 với đường tròn(O), cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh AE=DQ
Từ M ngoài đường tròn (O ; 3cm) vẽ các tiếp tuyến MA, MB (A,B là các tiếp điểm). Vẽ đường kính AC , tiếp tuyến tại C của đường tròn (O) cắt AB tại D. MO cắt AB tại I.
1, Tính AB×AD
2, Chứng minh OD vuông góc với MC
Bài 6: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC
a) Chứng minh OA vuông góc với BC tại H
b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D), Chứng minh: AE.AD=AH.AO
c) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm (O)
d) Gọi I là trung điểm cạnh AB, qua I vẽ đừng thẳng vuông góc với cạnh AO tại M và đường thẳng này cắt đường thẳng DF tại N. Chứng minh: ND=NA
cho đường tròn 0 . từ điểm A nằm ngoài 0 vẽ tiếp tuyến AB , AC với O . vẽ đường kính BD. Tiếp tuyến tại D của O cắt BC tại E. Chứng minh ABOC nội tiếp
Qua điểm A ngoài đường tròn (O), vẽ đường thẳng xy vuông góc với OA. Lấy điểm B thuộc (O) sao cho góc AOB là góc tù. Tiếp tuyến tại B của (O) cắt đường thẳng xy tại C. Đường thẳng qua B và vuông góc với OC tại H cắt OA, xy và (O) lần lượt tại D,E và F( F khác B)
a/ Chứng ming tứ giác ACOB nội tiếp
b/ Chứng minh CB^2=CE.CA
c/ Chứng minh 1/BE+1/BD=1/BH
d/ Đường trung tuyến CM của tam giác CBO cắt đoạn BH tại I, tia OI cắt BC tại N. Gọi K là trung điểm OI.Cm: ba điểm N,H,K thẳng hàng
Cho A là một điểm nằm ngoài đường tròn \(\left(O;R\right)\). Qua A vẽ hai tiếp tuyến AB, AC \((\)B, C là tiếp điểm\()\). H là giao điểm của AO và BC. Kẻ đường kính BD; AD cắt \(\left(O\right)\) tại E.
a. Chứng minh: OA \(\perp\) BC và CD // OA.
b. Chứng minh: AH.AO \(=\) AE.AD và ∠AHE \(=\) ∠ADO.
c. Cho OB = 2cm, OA = 4 cm. Chứng minh: △ABC là tam giác đều và tính diện tích △ABC
Cho (O;R).Từ một điểm M nằm ngoài đường tròn,kẻ hai tiếp tuyến MA,MB(A,B là các tiếp điểm).Qua A,kẻ đường thẳng song song với MO cắt (O) tại E,đường thẳng ME cắt (O) tại F,đường thẳng AF cắt MO tại N,MO cắt AB tại H
CM: góc MHF= góc MEO
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC(B,C là tiếp điểm) với đường tròn (O).
câu a: chứng minh AO vuông góc với BC tại H.
câu b: vẽ đường kính CD của đường tròn (O), AD cắt đường tròn tại M(M khác D). chứng minh tứ giác AMHC nội tiếp
.câu c: tia BM cắt AO tại N. chứng minh NH^2=NM.NB và NA=NH.
câu d: tia AO cắt đường tròn tại I và K(I nằm giữa A và O). chứng minh rằng :1/AN=1/AI+1/AK.