Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thế Trí Trương

Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành.

Tử-Thần /
26 tháng 11 2021 lúc 16:38

Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}

Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.

Có 8 cách chọn chữ số a lấy từ tập S.

Có 7 cách chọn chữ số b lấy từ tập S và khác a.

Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.

Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.

Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.

Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.

Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.

Vậy tổng các số abcde mở rộng là:

840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)

Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.

Có 7 cách chọn chữ số b lấy từ tập T.

Có 6 cách chọn chữ số c lấy từ tập T và khác b.

Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.

Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.

Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.

Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.

Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)

Từ (1) và (2) suy ra tổng các số abcde cần tìm là:

261330720 – 3732960 = 257597760

Kậu...chủ...nhỏ...!!!
26 tháng 11 2021 lúc 16:38

tham khảo :)

2015979840

Nguyễn Ngọc Minh Anh
26 tháng 11 2021 lúc 16:41

10234,10235,10236,10237,10324,10235,10236,10237,10423,..


Các câu hỏi tương tự
Nguyễn Đình Quân
Xem chi tiết
Nguyễn Đình Quân
Xem chi tiết
Phạm Hoàng An
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết
Lê Tiến Anh
Xem chi tiết
Nguyễn Vũ Gia Tuyển
Xem chi tiết
Đào Khánh Hoàng
Xem chi tiết
Đỗ Phạm Nam Hải
Xem chi tiết
Nguyễn Ngọc Huyền
Xem chi tiết