Trong mp (oxy) , đường d : 5x-y+6=0 và đường tròn (c) : x²+y²+2x-6y+4=0 . Hãy xác định : (d') và (c') của d và (c) , qua phép đối xứng tâm I (1;2) ?
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình x 2 + y 2 + 2 x - 6 y + 6 = 0 ; điểm I(1;2). Phép đối xứng tâm I biến (C) thành (C’) có phương trình:
A. x 2 + y 2 - 6 x - 2 y + 6 = 0
B. x 2 + y 2 - 2 x - 6 y + 6 = 0
C. x 2 + y 2 + 6 x - 2 y - 6 = 0
D. x 2 + y 2 - 6 x + 2 y + 6 = 0
Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3 x + y + 1 = 0 . Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90 o .
Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình x 2 + y 2 − 2 x + 4 y – 4 = 0 . Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x – y – 3 = 0. Viết phương trình đường thẳng d 1 là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm I(−1;2) và phép quay tâm O góc quay - 90 ο .
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0, tìm phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I(1;2).
A. x+y+4=0
B. x+y-4=0
C. x-y+4=0
D. x-y-4=0
Trong mặt phẳng Oxy cho đường thẳng d: 2x – y + 6 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng tâm I(−2;1).
Trong mặt phẳng Oxy cho hai đường thẳng d: x − 5y + 7 = 0 và d′: 5x – y – 13 = 0. Tìm phép đối xứng qua trục biến d thành d’.