Cho số phức z thỏa mãn z + 3 − 4 i = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tìm tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; − 4 , R = 5 .
B. I − 3 ; 4 , R = 5 .
C. I 3 ; − 4 , R = 5.
D. I − 3 ; 4 , R = 5.
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w=(3-4i)z-1+2i là đường tròn tâm I, bán kính R. Tìm tọa độ tâm I và bán kính R của đường tròn đó
A. I(1;2); R= 5
B. I(1;-2); R=5
C. I(1;2); R=5
D. I(-1;2); R=5
Cho số phức z thỏa mãn z + 3 - 4 i = 5 . Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức z là một đường tròn. Tim tọa độ tâm I và bán kính R của đường tròn đó.
A. I 3 ; - 4 , R = 5
B. I - 3 ; 4 , R = 5
C. I 3 ; - 4 , R = 5
D. I - 3 ; 4 , R = 5
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w=(3-4i)z-1+2i là đường tròn tâm I, bán kính R. Tìm tọa đọ tâm I và bán kính R của đường tròn đó.
A. I(-1; 2); R = 5
B. I(1; 2); R = 5
C. I(1; 2); R = 5
D. I(-1; 2); R = 5
Cho số phức z thỏa mãn tập hợp z - 1 = 3 . Biết rằng tập hợp các điểm biểu diễn số phức w với 3 - 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I - 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; - 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp z - 1 = 3 . Biết rằng tập hợp các điểm biểu diễn số phức w với 3 - 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I - 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; - 1 2 , r = 3
Cho số phức z thỏa mãn: z = 4 . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = 3 + 4 i z + i là một đường tròn có bán kính là:
A. 4
B. 5
C. 20
D. 22
Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện z + 2 - 5 i = 6 là đường tròn có tâm và bán kính lần lượt là
A. I - 2 ; 5 , R = 6
B. I 2 ; - 5 , R = 36
C. I - 2 ; 5 , R = 36
D I 2 ; - 5 , R = 6
Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z + i = − 1 + i z là đường tròn có tâm và bán kính là
A. Tâm I 0 ; 1 bán kính R = 2
B. Tâm I 0 ; − 1 bán kính R = 2
C. Tâm I 0 ; − 1 bán kính R = 2
D. Tâm I 0 ; 1 bán kính R = 2
Tìm các số phức z có phần thực lớn hơn 1 thỏa mãn z − 1 = z ¯ − 1 + i , đồng thời điểm biểu diễn số phức z trên mặt phẳng tọa độ thuộc đường tròn có tâm I 1 ; 0 , bán kính R = 1 .
A. z = − 1 + 3 2 − 1 2 i hoặc z = − 1 − 3 2 − 1 2 i
B. z = − 1 + 3 2 − 1 2 i hoặc z = − 1 − 3 2 + 1 2 i
C. z = 1 + 3 2 + 1 2 i hoặc z = 1 - 3 2 + 1 2 i
D. z = 1 + 3 2 − 1 2 i hoặc z = 1 - 3 2 − 1 2 i