Chọn A.
Từ giả thiết suy ra và
Suy ra
Để hai vecto trên vuông góc với nhau khi và chỉ khi:
2k – 40 = 0 hay k = 20
Chọn A.
Từ giả thiết suy ra và
Suy ra
Để hai vecto trên vuông góc với nhau khi và chỉ khi:
2k – 40 = 0 hay k = 20
Trong mặt phẳng tọa độ Oxy cho hai vectơ u → = i → + 2 j → ; v → = k i → + 2 j → . Tìm k để vectơ u → vuông góc với vectơ v →
A. k = 2
B. k = 8
C. k = -4
D. k = 4
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 4 ; 1 và v → = 1 ; 4 . Tìm m để vectơ a → = m . u → + v → tạo với vectơ b → = i → + j → một góc 450.
A. m = 4
B.m = -1/2
C.m = -1/4
D.m = 1/2
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 1 2 i → − 5 j → và v → = k i → − 4 j → . Tìm k để vectơ u → vuông góc với v →
A. k = 20
B. k = -20
C. k = -40
D. k= 40
Trong mặt phẳng tọa độ Oxy, cho hai vectơ u → = 1 2 i → − 5 j → và v → = k i → − 4 j → . Tìm k để vectơ u → → vuông góc với v →
A. k = 20
B. k = -20
C. k =- 40
D. k =40
Trong mặt phẳng với hệ tọa độ vuông góc Oxy cho ba điểm I(1;1) J(-2;2) K(2;-2).Tìm tọa độ các đỉnh của hình vuông ABCD sao cho I là tâm hình vuông, J thuộc cạnh AB và K thuộc cạnh CD.
Trong mặt phẳng tọa độ Oxy, các khẳng định sau đúng hay sai?
a, Hai vecto đối nhau thì chúng có hoành độ đối nhau.
b, Vecto a→ ≠ 0→ cùng phương với vecto i→ nếu a→ có hoành độ bằng 0.
c, Vecto a→ có hoành độ bằng 0 thì cùng phương với vecta j→
Trong mặt phẳng tọa độ Oxy; cho vectơ a → 9 ; 3 . Vectơ nào sau đây không vuông góc với vecto a → ?
A. x → 1 ; - 3
B. x → 2 ; - 6
C. x → 3 ; 1
D. x → 3 ; - 9
Trong mặt phẳng tọa độ Oxy, cho ba vectơ u → = 4 ; 1 , v → = 1 ; 4 và a → = u → + m . v → với m ∈ ℝ . Tìm m để a → vuông góc với trục hoành.
A. m = 4
B. m = -4
C. m = -2
D. m = 2
Trong mặt phẳng tọa độ Oxy, cho a ⃗ = ( 1 ; - 3 ) , b ⃗ = ( 6 ; x ) . Hai vectơ đó vuông góc với nhau khi và chỉ khi
A. x = - 2
B. x = 2
C.x = -3
D.x = 3